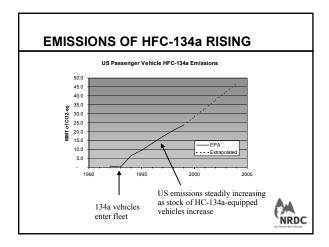
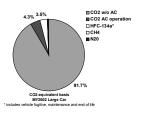
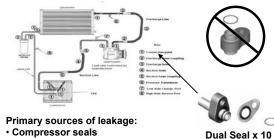
Reducing Global Warming Pollution from Mobile Air Conditioning


Roland J. Hwang

Senior Analyst Air & Energy Program Natural Resources Defense Council rhwang@nrdc.org

CARB Technology Workshop


Sacramento, CA April 20, 2004


IMPORTANCE OF AC EMISSIONS

- 8% of total global warming pollution emissions on a per vehicle basis
- Largest source of non-CO₂ emissions
- Largest source of accessory related CO₂ emissions

SIMPLE SOLUTIONS AVAILABLE TO **CONTROL AC SYSTEM LEAKAGE**

- · Compressor seals
- Connections x 10
- Hoses x 8

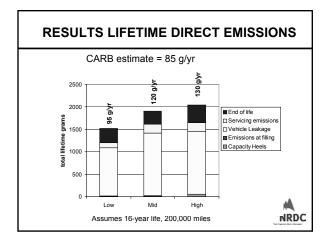
DIRECT 134a EMISSIONS: METHODOLOGY

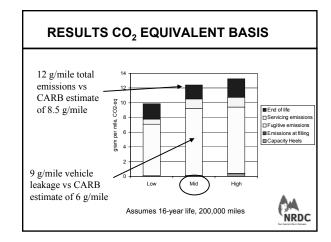
- Lifecycle emissions ("cradle to grave")
 - Manufacturing
 - Vehicle leakage
 - Servicing (not including DIY'ers)
- End of life
- · Emission factors
 - From previously published estimates, especially Europe
 - Adapted for larger US charge size
- Range of emission scenarios
 - Low, Mid, High
- · Spreadsheet Model
 - Predicts recharge and recovery

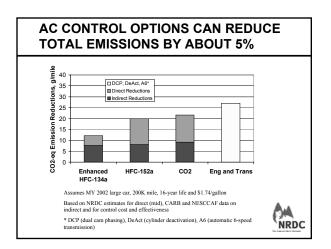
MANUFACTURING, SERVICING, AND **END OF LIFE**

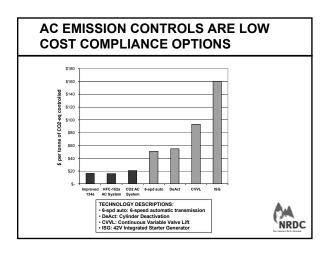
- Manufacturing
 - Small amount lost during filling of system, 1 to 5%
 - This study: 1, 2 and 6%
- Servicing
 - Recharge at 60% of original charge (60%)
 - Low: 6% of remaining charge = 55 g
 - Mid and High: 100 g
 - Results in 2-3 recharges over vehicle life
- End of life recovery
 - Unclear how much recovered due to low value
 - Assume 0, 25 and 50% recovery

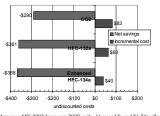
VEHICLE LEAKAGE


- Regular
 - Specifications appear to be around 25 to 40 g/yr but real-world should be higher
 - One European study found an average leak rate of 7.7% for US size charges (=70 g/yr)
 - This study: 50 to 70 g/yr
- Irregular (accidental releases)
 - European study estimated at 1.9% of initial charge (=17 g/yr for US-size charge)




SUMMARY KEY ASSUMPTIONS


	Low	Mid	High
original charge, grams	910	910	910
Capacity Heels, % loss of orig charge	1%	2%	6%
Fugitive regular, g/yr	50	70	70
Accidental (irregular)	17	17	17
charge at refill, %	60%	60%	60%
charge at refill, g	546	546	546
Servicing emissions, g	54.6	100	100
One time servicing emissions	0	0	0
end of life recovery	50%	25%	0%



AC REDUCTIONS ARE EXTREMELY COST-EFFECTIVE

- · Incremental cost of \$40 to \$83 (NESCCAF 2004)
- Lifetime operating cost savings for fuel = \$300-375 (undisc)
- Enhanced 134a and 152a reduces one servicing = \$100
- · Simple payback time of 2 to 4 years

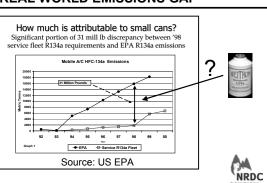
Assumes MY 2002 large car, 200K mile, 16-year life and \$1.74/gallon NRDC calculations based on CARB and NESCCAF data

STATUS OF ENHANCED HFC-134a SYSTEMS

- Introduction in MY2006 timeframe possible since technology is well known
- Low leak components being developed by industry already to meet upcoming European regulations
- Variable displacement compressors already widespread in Europe
- New government/industry partnership announced at 2004 MAC Summit with goal of production vehicles by MY2006

COMMENTS ON CARB ANALYSIS

- · Comparison
 - CARB direct emission estimates roughly consistent with NRDC "low" scenario
 - NRDC "mid" estimate is roughly 50% higher (8.5 vs 12 g/mile of CO2-eq)
- Differences
 - Initial charge, 950 g (CARB) vs. 910 g (MACS)
 - Higher vehicle leakage (70 g/yr)
 - Maintenance accidental releases, included in CARB 950g initial charge?
 - Percent charge at refill, 52% (CARB) vs. 60% (MACS), results in two charges per life, versus one charge in CARB analysis



COMMENTS CARB ANALYSIS

- Industry plans for servicing after 4 years (2-3 services over life), with longer term goal of 7 years (1 service over life)
- Low leak HFC-134a systems can eliminate one servicing
 - Reduces emissions by 50-100 gram over vehicle life
 - Additional \$100 savings in servicing cost to consumers

REAL WORLD EMISSIONS GAP

COMMENTS ON CARB ANALYSIS

- Real world HFC-134a emissions "gap"
 - Well known emissions "gap" in EPA's top down and bottom-up inventory
 - Partially due to "do-it-yourselfers" with disposable cans and other uses, but gap is too large to be fully explained by these sources
- · Implications
 - HFC-134a needs better "cradle-to-grave" controls which is outside the scope of AB1493
 - Alternative low-GWP refrigerants likely to have larger real-world benefit than estimated in CARB's analysis

CONCLUSIONS

- HFC-134a emissions are rapidly rising and are the largest source of non-CO₂ global warming pollution emissions from passenger vehicles
- Control technologies are rapidly being developed to meet forthcoming EC regulations
- Enhanced 134a are likely to be available by MY2006 and are a low cost global warming control option for manufacturers
- Control options save consumers money with simple payback time as low as 2 years

CONCLUSIONS (cont.)

- CARB's assessment of direct and indirect emissions reductions is technically sound and a substantial contribution to our understanding of these emissions
- CARB's direct emission assessment is conservative, which will tend to underestimate the emission reductions and cost-effectiveness of control options

MAC Industry: Part of the Solution or Part of the Problem?

